?
微塑料對(duì)海洋橈足類攝食的影響與微塑料的類型、尺寸以及橈足類的種類有關(guān)[1, 25]。微塑料對(duì)猛水蚤的攝食率和濾水率具有消極作用,且具有劑量-效應(yīng)關(guān)系,即隨著微塑料濃度的增大,攝食率和濾水率下降幅度越大。原因可能是由于微塑料對(duì)猛水蚤消化系統(tǒng)的機(jī)械阻塞,導(dǎo)致攝入微塑料后無(wú)法消化。微塑料會(huì)聚團(tuán)或堆積在動(dòng)物消化道內(nèi),“飽腹感”使其攝食率降低,從而攝入營(yíng)養(yǎng)和能量不足,導(dǎo)致生殖能力等降低[13, 26]。另外,微塑料會(huì)附著在橈足類的觸角、附肢、背甲、尾叉等部位,影響其活動(dòng)能力,導(dǎo)致其有“不適感”,從而減少攝食率。除了被動(dòng)濾食,海洋橈足類能夠感知化學(xué)物質(zhì),當(dāng)存在藻和微塑料時(shí),橈足類表現(xiàn)為擇食性,橈足類會(huì)避開(kāi)攝食與微塑料大小、形狀相似的藻[27]。Cole等[28]研究了尼龍對(duì)飛馬哲水蚤攝食的影響,研究表明以不同藻作為餌料,尼龍纖維和尼龍微粒對(duì)飛馬哲水蚤的攝食影響不同,飛馬哲水蚤表現(xiàn)為選擇性攝食,當(dāng)餌料為圓海鏈藻、錐狀克里普藻時(shí),尼龍纖維顯著抑制攝食率,而尼龍微粒對(duì)上述兩種藻的攝食率沒(méi)有明顯影響。我們的結(jié)果顯示尼龍6微粒對(duì)猛水蚤的攝食率有抑制作用,與Cole等[28]結(jié)果不同的原因主要是因?yàn)槲覀兯脛?dòng)物類型、微塑料類型及濃度不同,我們的微塑料濃度高于Cole等[28]所用的濃度。本實(shí)驗(yàn)所用的微塑料濃度12.5~50 mg·L-1大約為2.4×107~6.3×109 items·L-1,與餌料濃度1.5 ×108cells·L-1相近;微塑料濃度為100~200 mg·L-1大約為1.9×108~2.5×1010 items·L-1,高于所用的餌料濃度。隨著微塑料濃度的增大,盡管橈足類對(duì)微塑料有化感作用,但低選擇性濾食仍然導(dǎo)致橈足類對(duì)微塑料的攝食,并且微塑料濃度越大對(duì)攝食率和濾水率的有害作用越大。微塑料對(duì)海洋生物不利影響所表現(xiàn)出的劑量-效應(yīng)關(guān)系在Rehse等[22]中已有報(bào)道。本實(shí)驗(yàn)中的PA 6對(duì)猛水蚤的24 h·EC50與Frydkj?r等[29]的不規(guī)則微塑料聚乙烯(polyethylene,PE)對(duì)枝角類大型蚤Daphnia magna 48 h·EC50 (65 mg·L-1)比較相近。Rehse等[22]研究表明1 μm PE對(duì)大型蚤96 h·EC50為57.4 mg·L-1。目前已有一些微塑料對(duì)浮游動(dòng)物EC50的報(bào)道[22, 29],但微塑料對(duì)浮游動(dòng)物的急性致死效應(yīng)尚未見(jiàn)報(bào)道,因此需要開(kāi)展微塑料長(zhǎng)期暴露對(duì)浮游動(dòng)物的亞致死實(shí)驗(yàn)。
本文在攝食率實(shí)驗(yàn)測(cè)定時(shí)發(fā)現(xiàn),在不添加橈足類的對(duì)照組中,添加微塑料與無(wú)添加微塑料的對(duì)照相比,微塑料尼龍6的暴露使三角褐指藻的生長(zhǎng)速率降低。采用的尼龍6的濃度與Zhang等[30]的濃度相近,雖然所用的微塑料和藻的類型不同,但對(duì)藻的生長(zhǎng)抑制效應(yīng)相近。微塑料對(duì)藻可能會(huì)產(chǎn)生抑制細(xì)胞生長(zhǎng)、破壞細(xì)胞膜結(jié)構(gòu)、降低葉綠素含量和光合效率、引起細(xì)胞氧化損傷等毒性效應(yīng)[30-31]。Zhang等[30]研究了微塑料對(duì)中肋骨條藻的生態(tài)影響,結(jié)果表明微塑料聚氯乙烯(polyvinyl chloride,PVC)抑制藻的生長(zhǎng)和光合作用,電鏡掃描結(jié)果表明,微塑料的吸附和聚團(tuán)是造成抑制作用的原因。微塑料對(duì)微藻的致毒機(jī)理比較復(fù)雜,已提出的可能的致毒機(jī)理主要有機(jī)械損傷、遮蔽效應(yīng)、氧化損傷、吸附團(tuán)聚,并且這些致毒效應(yīng)往往同時(shí)存在,致使藻細(xì)胞生長(zhǎng)代謝異常甚至死亡[19]。微塑料影響藻細(xì)胞生長(zhǎng)的同時(shí),藻細(xì)胞也會(huì)產(chǎn)生應(yīng)激反應(yīng)以減小、修復(fù)微塑料對(duì)其造成的損傷[32]。微塑料對(duì)藻生理生化、營(yíng)養(yǎng)的影響[32]推測(cè)也會(huì)對(duì)橈足類的攝食產(chǎn)生間接的影響,尚需進(jìn)一步證實(shí)。
3.2 微塑料對(duì)橈足類排泄的影響攝食率的降低直接導(dǎo)致猛水蚤的排糞率隨著微塑料濃度的升高而降低。微塑料尼龍6對(duì)猛水蚤總排糞率的24 h·EC50(221.2 mg·L-1)高于對(duì)正常排糞率的24 h·EC50(84.1 mg·L-1),這與總糞便顆粒中含有異常糞便顆粒有關(guān)。由于尼龍6對(duì)猛水蚤總排糞率的24 h·EC50僅涉及微塑料對(duì)排糞顆粒數(shù)量的抑制,無(wú)法代表對(duì)顆粒大小、密度的影響,因此不能全面衡量微塑料對(duì)猛水蚤排泄的消極影響。同時(shí)因?yàn)槲⑺芰系臄z入,猛水蚤排出體積小、短小橢球狀的糞便顆粒,且隨著微塑料濃度的升高,異常糞便在總糞便顆粒里所占百分比不斷升高。微塑料的攝入使糞便顆粒的組成和密度發(fā)生改變,導(dǎo)致密度低于正常糞便的密度,而不同密度的微塑料也表現(xiàn)為不同的沉降速率[27]。本實(shí)驗(yàn)發(fā)現(xiàn)暴露微塑料的糞便不容易沉降,與正常糞便相比,其沉降速率顯著降低。同時(shí)因?yàn)槊退榧S便中微塑料含量增大,而微塑料黏度較差,導(dǎo)致其糞便顆粒更易散開(kāi),而導(dǎo)致異常糞便的出現(xiàn)[24]。Coppock等[27]指出糞便顆粒的體積與微塑料的形狀有關(guān),而且糞便沉降速率與微塑料的類型有關(guān)。
3.3 微塑料對(duì)橈足類生殖的影響微塑料會(huì)降低海洋橈足類的生殖能力和存活率[25]。本實(shí)驗(yàn)中,微塑料延遲猛水蚤雌體的首次抱卵,微塑料濃度越高,抱卵率越低。這主要是由于微塑料的攝入導(dǎo)致橈足類攝入的能量和營(yíng)養(yǎng)不足[33-34],所以延遲抱卵,抱卵率降低。Sussarellu等[26]研究表明微塑料聚苯乙烯對(duì)太平洋牡蠣的生殖功能具有傷害作用,卵母細(xì)胞的數(shù)量、直徑顯著下降。本實(shí)驗(yàn)所用的微塑料濃度暴露未導(dǎo)致橈足類死亡,但推測(cè)可能已經(jīng)對(duì)猛水蚤的卵母細(xì)胞結(jié)構(gòu)產(chǎn)生影響,并影響其孵化率。本實(shí)驗(yàn)數(shù)據(jù)未能得到微塑料尼龍6對(duì)猛水蚤抱卵率的24 h·EC50,隨時(shí)間變化,48~144 h的EC50各不相同,因此,微塑料對(duì)猛水蚤生殖影響的作用機(jī)理及時(shí)間-效應(yīng)還需進(jìn)一步研究。
3.4 其他影響除了攝食、排糞、生殖,微塑料還會(huì)對(duì)橈足類其他方面產(chǎn)生影響,如代謝以及行為等。Deng等[35]研究表明,5和7 μm的微塑料微球均會(huì)引起魚(yú)類肝部的局部感染及脂質(zhì)積累,代謝組學(xué)分析顯示,塑料微球會(huì)引起魚(yú)類肝部代謝產(chǎn)物的變化并擾亂肝臟部分機(jī)制和能量的代謝。Cole等[13]研究表明微塑料聚苯乙烯(Polystyrene,PS)對(duì)橈足類Calanus helgolandicus的耗氧率沒(méi)有明顯影響。微塑料對(duì)橈足類代謝的影響與所用微塑料類型不同以及微塑料濃度有關(guān)。除了上述影響,微塑料對(duì)動(dòng)物的行為還會(huì)有影響。叢藝等[36]研究10 μm聚苯乙烯微粒(PS)對(duì)沙蠶掘穴行為影響和細(xì)胞超微結(jié)構(gòu)的改變,結(jié)果表明PS造成沙蠶掘穴行為延長(zhǎng)、體壁表皮細(xì)胞凋亡和肌肉細(xì)胞線粒體水腫。目前,針對(duì)PS對(duì)海洋生物的研究較多,PS主要用于光學(xué)玻璃及儀器、燈罩、包裝材料,其發(fā)泡塑料可作絕熱材料、快餐盒等。與PS不同,尼龍6具有無(wú)毒、質(zhì)輕、優(yōu)良的機(jī)械強(qiáng)度、耐磨性及較好的耐腐蝕性,廣泛應(yīng)用于代替銅的機(jī)械、化工等工業(yè)中制造軸承、齒輪、泵葉,另外還用于頭盔、輸液管、醫(yī)用縫線、漁網(wǎng)等。尼龍的分布也非常廣泛,Alam等[37]對(duì)Ciwalengke河的微塑料進(jìn)行了調(diào)查研究,結(jié)果表明表層海水平均微塑料顆粒為(5.85±3.28)個(gè)/L,主要微塑料類型為聚酯纖維(Polyester)和尼龍纖維。因此研究尼龍6對(duì)海洋橈足類的毒理效應(yīng)對(duì)于研究微塑料污染對(duì)海洋食物網(wǎng)的影響具有重要意義。
4 結(jié)論(1) 微塑料尼龍6的短期暴露使猛水蚤攝食率、濾水率和排糞率降低,而且降低幅度與微塑料濃度有關(guān),濃度越大,降低幅度越大。微塑料尼龍6對(duì)猛水蚤攝食率、濾水率、排糞率24 h·EC50分別為67.7、62.2、84.1 mg·L-1。另外,尼龍6使猛水蚤的糞便顆粒小型化,由長(zhǎng)橢球體變?yōu)槎绦E球體,可能與其粘度或物理結(jié)構(gòu)的改變有關(guān)。微塑料尼龍6暴露導(dǎo)致糞便顆粒的沉降速率顯著降低。
(2) 微塑料尼龍6暴露使猛水蚤抱卵延遲,相同培養(yǎng)時(shí)間的抱卵率降低??赡苁俏⑺芰系拇嬖趯?dǎo)致猛水蚤攝食率的降低,進(jìn)而營(yíng)養(yǎng)和能量攝入不足,進(jìn)一步導(dǎo)致對(duì)生殖活動(dòng)的影響。
本實(shí)驗(yàn)所用的微塑料濃度高于現(xiàn)場(chǎng)環(huán)境,因此用本結(jié)果推到現(xiàn)實(shí)海洋環(huán)境中時(shí),還需考慮現(xiàn)場(chǎng)微塑料種類、濃度、作用時(shí)間及其不同的生態(tài)效應(yīng)。
[1] |
Cole M, Lindeque P, Fileman E, et al. Microplastic ingestion by zooplankton[J]. Environmental Science&Technology, 2013, 47(12): 6646-6655. (
![]() |
[2] |
Sun XX, Liu T, Zhu M L, et al. Retention and characteristics of microplastics in natural zooplankton taxa from the East China Sea[J]. Science of the Total Environment, 2018, 640-641: 232-242. (
![]() |
[3] |
孫承君, 蔣鳳華, 李景喜, 等. 海洋中微塑料的來(lái)源、分布及生態(tài)環(huán)境影響研究進(jìn)展[J]. 海洋科學(xué)進(jìn)展, 2016, 34(4): 449-461.
Sun C J, Jiang F H, Li J X, et al. The research progress in source, distribution, ecological and environmental effects of marine microplastic[J]. Advances in Marine Science, 2016, 34(4): 449-461. ( ![]() |
[4] |
Waller C L, Griffiths H J, Waluda C M, et al. Microplastics in the Antarctic marine system:An emerging area of research[J]. Science of the Total Environment, 2017, 598: 220-227. (
![]() |
[5] |
Browne M A, Crump P, Niven S J, et al. Accumulation of microplastic on shorelines woldwide:Sources and sinks[J]. Environmental Science&Technology, 2011, 45(21): 9175-9179. (
![]() |
[6] |
LusherA L, Burke A, O'Connor I, et al. Microplastic pollution in the Northeast Atlantic Ocean:Validated and opportunistic sampling[J]. Marine Pollution Bulletin, 2014, 88(1-2): 325-333. (
![]() |
[7] |
Browne M A, Dissanayake A, Galloway T S, et al. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis(L.)[J]. Environmental Science & Technology, 2008, 42(13): 5026-5031.(
![]() |
[8] |
von Moos N, Burkhardt-Holm P, K hler A. Uptake and effects of microplastics on cells and tissue of the blue mussel, Mytilus edulis, L. after an experimental exposure[J]. Environmental Science & Technology, 2012, 46(20): 11327-11335. (
![]() |
[9] |
Watts A J R, Lewis C, Goodhead R M, et al. Uptake and retention of microplastics by the shore crab, Carcinus maenas[J]. Environmental Science & Technology, 2014, 48(15): 8823-8830. (
![]() |
[10] |
Sussarellu R, Suquet M, Thomas Y, et al. Oyster reproduction is affected by exposure to polystyrene microplastics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(9): 2430-2435. (
![]() |
[11] |
Dawson A, Huston W, Kawaguchi S, et al. Uptake and depuration kinetics influencemicroplastic bioaccumulation and toxicity in Antarctic krill (Euphausia superba)[J]. Environmental Science & Technology, 2018, 52(5): 3195-3201. (
![]() |
[12] |
武芳竹, 曾江寧, 徐曉群, 等. 海洋微塑料污染現(xiàn)狀及其對(duì)魚(yú)類的生態(tài)毒理效應(yīng)[J]. 海洋學(xué)報(bào), 2019, 41(2): 85-98.
Wu F Z, Zeng J N, Xu X Q, et al. Status of marine microplastic pollution and its ecotoxicological effects on marine fish[J]. Haiyang Xuebao, 2019, 41(2): 85-98. ( ![]() |
[13] |
Cole M, Lindeque P, Fileman E, et al. The Impast of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus[J]. Environmental Science & Technology, 2015, 49(2): 1130-1137. (
![]() |
[14] |
Ziajahromi S, Kumar A, Neale P A, et al. Impact of microplastic beads and fibers on waterflea (Ceriodaphnia dubia) survival, growth, and reproduction:Implications of single and mixture exposures[J]. Environmental Science & Technology, 2017, 51(22): 13397-13406. (
![]() |
[15] |
王超, 張德鈞, 黃慧, 等. 海洋生物中微塑料的檢測(cè)與危害研究進(jìn)展[J]. 食品安全質(zhì)量檢測(cè)學(xué)報(bào), 2018, 9(11): 2678-2683.
Wang C, Zhang D J, Huang H, et al. Review of microplastics detection from marine organisms and their harms[J]. Journal of Food Safety and Quality, 2018, 9(11): 2678-2683. ( ![]() |
[16] |
冉文, 滕佳, 劉永亮, 等. 環(huán)渤海潮間帶長(zhǎng)牡蠣微塑料富集特征研究[J]. 海洋通報(bào), 2018, 37(5): 106-113.
Ran W, Teng J, Liu Y L, et al. Microplastic ingestion characteristics in the Pacific oysters collected from the intertidal zone of the Bohai Rim[J]. Marine Science Bulletin, 2018, 37(5): 106-113. ( ![]() |
[17] |
張石云, 宋超, 張敬衛(wèi), 等. 微塑料暴露對(duì)羅非魚(yú)肌肉中磺胺甲唑殘留的影響[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 2018, 34(9): 857-864.
Zhang S Y, Song C, Zhang J W, et al. Effects of micro-plastics on sulfamethoxazole (SMZ) residues in tilapia (Oreochromis niloticus) muscle[J]. Journal of Ecology and Rural Environment, 2018, 34(9): 857-864. ( ![]() |
[18] |
涂燁楠, 凌海波, 吳辰熙, 等. 淡水浮游動(dòng)物攝食微塑料過(guò)程及影響研究[J]. 環(huán)境科學(xué)與技術(shù), 2018, 41(11): 1-8.
Tu Y N, Ling H B, Wu C X, et al. Ingestion and effects of microplastics on freshwater zooplankton[J].Environmental Science & Technology, 2018, 41(11): 1-8. ( ![]() |
[19] |
王素春, 劉光洲, 張歡, 等. 微塑料對(duì)微藻的毒性效應(yīng)研究進(jìn)展[J]. 海洋環(huán)境科學(xué), 2019, 38(2): 192-197.
Wang S C, Liu G Z, Zhang H, et al. Toxicity research progress of microplastics on microalgae[J]. Marine Environmental Science, 2019, 38(2): 192-197. ( ![]() |
[20] |
Kim D, Chae Y, An Y J. Mixture toxicity of nickel and microplastics with different functional groups on Daphnia magna[J]. Environmental Science & Technology, 2017, 51(21): 12852-12858. (
![]() |
[21] |
李飛亞. 聚酰胺6產(chǎn)業(yè)國(guó)內(nèi)外發(fā)展現(xiàn)狀及經(jīng)濟(jì)應(yīng)用研究[J]. 中國(guó)經(jīng)貿(mào)導(dǎo)刊(中), 2018, 912(29): 18-19.
Li F Y. Research on development status and economic application of polyamide 6 industry at home and abroad[J]. China Economic&Trade Herald, 2018, 912(29): 18-19. ( ![]() |
[22] |
Rehse S, Kloas W, Zarfl C. Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna[J]. Chemosphere, 2016, 153: 91-99. (
![]() |
[23] |
Frost B W. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus[J]. Limnology and Oceanography, 1972, 17(6): 805-815. (
![]() |
[24] |
Cole M, Lindeque P K, Fileman E, et al. Microplastics alter the properties and sinking rates of zooplankton faecal pellets[J]. Environmental Science & Technology, 2016, 50(6): 3239-3246. (
![]() |
[25] |
Lee K W, Shim W J, Kwon O Y, et al. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicas[J]. Environmental Science&Technology, 2013, 47(19): 11278-11283. (
![]() |
[26] |
Sussarellu R, Suquet M, Thomas Y, et al. Oyster reproduction is affected by exposure to polystyrene microplastics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(9): 2430-2435. (
![]() |
[27] |
Coppock R L, Galloway T S, Cole M, et al. Microplastics alter feeding selectivity and faecal density in the copepod, Calanus helgolandicus[J]. The Science of the Total Environment, 2019, 687: 780-789. (
![]() |
[28] |
Cole M, Coppock R, Lindeque P K, et al. Effects of nylon microplastic on feeding, lipid accumulation, and moulting in a coldwater copepod[J]. Environmental Science&Technology, 2019, 53: 7075-7082. (
![]() |
[29] |
Frydkj?r C K, Iversen N, Roslev P. Ingestion and egestion of microplastics by the cladoceran Daphnia magna:effects of regular and irregular shaped plastic and sorbed phenanthrene[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 99: 655-661. (
![]() |
[30] |
Zhang C, Chen X, Wang J, et al. Toxic effects of microplastic on marine microalgae Skeletonema costatum:Interactions between microplastic and algae[J]. Environmental Pollution, 2017, 220: 1282-1288. (
![]() |
[31] |
Besseling E, Wang B, Lürling M, et al. Nanoplastic affects growth of S. obliquus and reproduction of D. magna[J]. Environmental Science&Technology, 2014, 48(20): 12336-12343. (
![]() |
[32] |
Mao Y F, Ai H N, Chen Y, et al. Phytoplankton response to polystyrene microplastics:Perspective from an entire growth period[J]. Chemosphere, 2018, 208: 59-68. (
![]() |
[33] |
Ayukai T. Discriminate feeding of the calanoid copepod Acartia clausi in mixtures of phytoplankton and inert particles[J]. Marine Biology, 1987, 94(4): 579-587. (
![]() |
[34] |
Dagg M. Some effects of patchy food environments on copepods[J]. Limnology and Oceanography, 1977, 22(1): 99-107. (
![]() |
[35] |
Deng Y, Zhang Y, Lemos B, et al. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure[J]. Scientific Reports, 2017, 7: 1-10. (
![]() |
[36] |
叢藝, 周建行, 孫粒鈞, 等. 熒光聚苯乙烯微粒在沙蠶體內(nèi)的攝入、排出及其毒性效應(yīng)[J]. 海洋環(huán)境科學(xué), 2019, 38(2): 161-166.
Cong Y, Zhou J H, Sun L J, et al. Ingestion, egestion and toxic effects of fluorescent polystyrene microspheres on the Polychaete, Perinereis aibuhitensis[J]. Marine Environmental Science, 2019, 38(2): 161-166. ( ![]() |
[37] |
Alam F C, Sembiring E, Muntalif B S, et al. Microplastic distribution in surface water and sediment river around slum and industrial area (case study:Ciwalengke River, Majalaya district, Indonesia)[J]. Chemosphere, 2019, 224: 637-645. (
![]() |
來(lái)源:中國(guó)海洋大學(xué)